Gestational Diabetes – New Recommendations

Michael A. Belfort, MD, PhD

Professor
Department of Obstetrics and Gynecology
University of Utah School of Medicine
Director

Perinatal Research, Hospital Corporation of

US Preventive Services Task Force

 "The US Preventive Task Force concludes that the evidence is insufficient to recommend for or against routine screening for gestational diabetes."

I Recommendation. Guide to Clinical Preventive Services

- Fair to good evidence that screening combined with diet and insulin therapy will reduce fetal macrosomia in GDM
- Insufficient evidence that universal screening reduces important adverse health outcomes for mother or baby
- Frequent false positives may adversely affect a mother's perception of her health
- Choose not to screen at all, or only for "high risk" patients

6 Important Resources

- Fourth International Workshop on GDM
 - Chicago, IL, March 14, 1997, sponsored by ADA
 - Summary Statement was published in: Diabetes Care 1998;21:B161-7
- ADA Statement on Gestational Diabetes
 - Position Statement was published in: Diabetes Care 2002;25:S94-S96
- ACOG Practice Bulletin #30, September 2001
 - Clinical Management Guidelines For Obstetricians-Gynecologists (Replaces Technical Bulletin Number 200, December 1004)
- US Preventive Services Task Force Recommendation 2002
- American Association of Endocrinologists 2003
 Statement about blood glucose levels for inpatients
- ADA Position Statement on Preconception Care of Women with Diabetes – Diabetes Care 2004;27:276-9.

Other Governing Bodies

- ADA:
 - Screen all women at risk
 - ->25yrs, obese, high risk ethnic group, family hx, poor obstetric outcome
- ACOG Practice Pattern 2001:
 - Risk based approach
 - States that since so few people have no risk factors a universal screening program may be more practical
- Canadian Task Force 1991:
 - No evidence for or against screening

The Dissenting Opinion

- Significance of the condition is controversial:

 - Does the degree of hyperglycemia in GDM really represent a true risk to the mother?
- There are no evidence-based studies showing that prevention and rigorous treatment of GDM minimize maternal or fetal complications
- Given the ethical and medico-legal climate these studies are unlikely to be undertaken

American Association of Endocrinolgists (AACE)

- Statement issued for inpatient management
- Endorsed by AACE, ACE, and ADA
- Sets SOC for inpatient Mx of diabetes
- Addresses pregnancy:
 - 110mg/dl is upper limit in ICU
 - 180mg/dl is upper limit on non-critical care units
 - Prelabor pregnancy: 100 mg/dl preprandial and 120 mg/dl at 1 hour postprandial (cf: ACOG)
 - During labor and delivery: 100mg/dl is upper limit
 - Strict glycemic control during labor improves neonatal outcome
- The document is on the web:

http://www.aace.com/clin/guidelines/InpatientDiabetesPositionStatement.pdf

If you don't accept that GDM is a problem.....

- 2 X increased risk for PIH
- Macrosomia in up to 40% of GDM offspring
- Significantly increased risk of shoulder dystocia in macrosomic babies
- Increased polyhydramnios, preterm delivery and cesarean section in GDM
- Increased admission to NICU

Sendag et al. JRM 2001;46:1057-62 (Level II-2)

Offspring of Women with GDM

- Increased risk of diabetes and obesity by puberty BUT this risk is not related to birthweight
- Breast feeding may reduce obesity in offspring
- Potential for neurobehavioral abnormalities in offspring of poorly controlled GDM....BUT data are few and follow-up studies are needed
- Offspring of women with GDM may be more likely to have children with diabetes
- 33% of offspring of women with GDM only have glucose intolerance as adults

If you don't accept that GDM is a problem.....

- "Gestational Diabetes: The consequences of not treating. "Langer et al. AJOG 2005:192;989-97
- 555 untreated GDM patients after 37 weeks matched with 1110 treated GDM patients and 1110 non-diabetic control
 - Matched for delivery year, obesity, parity, ethnicity, GA, # prenatal visits
- Used a composite adverse outcome:
 - Stillbirth, macrosomia/LGA, hypoglycemia, erythrocytosis, hyperbilirubinemia

Langer et al. AJOG 2005:192;989-97 (Level II-2)

Glucola - Discounted?

- Medical College of Virginia Hospital 1991-2002
- 1OGTT > 140mg% followed by 3GTT
 - Used NDDG criteria and compared with CC
- ROC curves generated
 - 16 898 patients studied 2770 (16.4%) > 140mg%
 - 1972 patients with both 1OGTT and 3GTT had GDM diagnosed by both NDDG (21%) and CC (31%)
- Predictive value of 1OGTT was very low a cut-off of 200mg% predicted only 47-54% of GDM cases
- Conclusions: Inappropriate to use 1OGTT for screening **GDM**

Lanni and Barrett. J Mat Fetal Neonat Med 2004;15;375-9 (Level II-2)

If you don't accept that GDM is a problem.....

- Results:
 - Composite adverse outcome:
 59% for untreated women
 18% for treated
 11% for non-diabetics
- Macrosomia/LGA and metabolic complications:
 - 200 400% increase in untreated GDM vs treated and non-
 - No difference between treated and non-diabetic patients
- Comparison of maternal size/parity and disease severity showed a 200 300% increase in morbidity in untreated GDM versus treated and non-diabetic

Langer et al. AJOG 2005:192:989-97 (Level II-2)

1 Abnormal value on 3 hr GTT

- One abnormal value on 3 hour GTT:
 - Increased risk for fetal macrosomia Langer et al. Am J Obstet Gynecol 1989;161-593 (Level II-1)
 - If test is repeated 30% will subsequently show GDM Neiger et al. Am J Obstet Gyneol 1991;165-787 (Level II-3)
- Current testing may be insufficient:
 - 2 hour values between 120-165 mg/dl are associated with macrosomia, anomalies, preeclampsia and increased cesarean section rate

Tallerigo et al. NEJM 1986;315-989 (Level II-2)

Early Screening for GDM

- To determine the accuracy of the glucola at 16 weeks in identifying GDM
- 255 patients, 1hr glucola at 16 weeks

 - If > 135 mg/dl they had a 3hr GTT
 If < 135 mg/dl they had repeat testing in third trimester
- 25/255 got GDM
 - 16 week testing identified 96% (24/25)
 - A positive 16 week test gave a PPV or 55% (vs. 22% in 3rd trim)
 - If the 16 week value was < 110 mg/dl there was 99.4% NPV
 - If the 16 weeks test was 110 134 mg/dl the NPV was 96.2%

Nahum et al. JRM 2002;47;656-662 (Level II-3)

Target Plasma Glucose Levels in Pregnancy (whole blood) Fasting 60 - 90 mg/dl

Preprandial 60 - 105 mg/dl

1 hr Postprandial < 140 mg/dl

2 hr Postprandial < 120 mg/dl

2 am to 6 am 60 - 90 mg/dl

Postprandial Glucose Profile

- 65 patients (26 A1, 19 A2, and 20 Type 1)
- Monitored continuously for 72 hours
- Meal to peak postprandial level was 90 minutes and was similar for breakfast, lunch, or supper
- 50% of patients failed to return to baseline within 3 hours
- Hypoglycemia in 10% of patients (mean 160

Ben-Haroush et al. Am J Obstet Gynecol 2004;191:576-81

Target Plasma Glucose Levels in Pregnancy (plasma)

Fasting 70 - 105 mg/dl

Preprandial 70 - 120 mg/dl

1 hr Postprandial < 155 mg/dl

2 hr Postprandial < 130 mg/dl

■ 2 am to 6 am 70 - 105 mg/dl

What Meter are They Using??

- Whole Blood Meters:
 - Old fashioned
 - Take about 45 seconds to read BG
 - Need very accurate sized drop of blood
 - "One Touch Profile"
- Plasma Meters:
 - New and improved
 - Much quicker and more convenient
 - Different type of strip
 - "One Touch Ultra, Surestep, Freestyle, Accucheck"

Insulin Administration

- Fasting level greater than 95 mg/dl (whole blood) or 105 mg/dl (plasma)
- Postprandial > 120 mg/dl (whole blood) or 130 mg/dl (plasma) at 2 hours and 130-140 mg/dl (whole blood) or 155mg/dl (plasma) at 1 hour
- Fetal Macrosomia
- Abdominal Circumference > 75th% at 29-33 weeks
- Polyhydramnios??
- No recommendation on how long to try diet

 - 2 weeks if initial fasting level < 95 mg/dl
 ? If initial fasting level > 95 mg/dl perhaps go straight to insulin
- No particular insulin regimen better than any other

One-Touch Ultra **One-Touch Profile** Venous Blood

Newer Insulins

- There are a number of newer preparations available:
 - Lantus (long acting once daily dosage)
 - Humalog (short acting ~5 hrs, active within 15 minutes)
 - Novolog
- These are not specifically approved for use in pregnancy BUT their use is widespread and there have not been any reports of bad outcomes
- Actually, the FDA has not approved ANY insulin specifically for use in human pregnancy

Lantus - Issues

- Cannot be combined with any other insulin since it precipitates out and loses its duration of action
- In GDM a single daily shot of Lantus is often all that is needed
- Is marketed for bedtime use BUT often get better results when used in am (especially if in cases where there is night-time hypoglycemia)
- Duration of action is 20 24 hours ("poor woman's pump")

New Insulin – Short Acting			
	Onset	Peak	Duration
Humalog	10 – 15 minutes	0.75 – 2 hours	4 – 5 hours
Novolog	10 –15 minutes	1 – 3 hours	3 – 5 hours

Lantus - Dosing

- No absolute recommendations BUT we use:
- Never used insulin before:
 - -10 units at bedtime
 - Increase dose in 2 4 unit increments for elevated fasting
- Switching to Lantus from other insulin:
 - 80% of long acting insulin (NPH/ultralente/lente)
 - Increase dose in 2 4 unit increments for elevated fasting

Shorter Acting Insulins - Issues

- Shorter acting insulins do not cross the placenta
- No data to suggest that they are more immunogenic than longer acting insulins
- Recent large multicenter study did not show any increase in congenital abnormality rate with new shorter acting insulins

Lantus - Issues

- Long acting insulins do not appear to be mitogenic in humans
- May bind to IGF receptors when given in high doses (Diabetes 2000;49:999-1005)
- Not enough data to be certain that there is no immunogenicity
- Should inform patients of this information
- Some people recommend waiting for more data prior to using these agents in pregnancy

Patients best for NPH/Regular

- Lifestyle
- regimented lifestyle (fixed schedule)
- Diet:
 - Carbohydrate goals (i.e. 45 grams CHO per meal) rather than CHO counting
- Complexity Issues:
 - Unable/unwilling to master carbohydrate counting
- Number of shots per day:
 - Prefer BID or TID dosing

Patients best for Lantus and **Novolog/Humalog**

- Lifestyle:
 - prefer flexible schedule, skipping meals/snacks
- - Have to know how to count CHO
- Complexity Issues:
 - Can master carbohydrate counting and calculate
- Number of shots per day:
 - Do not mind at least 4 10 shots per day

Insulin Pump in Pregnancy

- Few data
- One small study suggests that there may be better glycemic control at beginning of pregnancy
- Retropsective study of 13 patients comparing them to their prior pregnancy without a pump
 - HbA1c was 6.7 +/- 1.2 versus 8.3 +/- 2.4 % (p <0.05)
- Need larger studies to confirm this finding Mostello et al. Obstet Gynecol 2002;99:22S

Dosing for Lantus and Novolog/Humalog

- Calculating the insulin needs:
 - 0.7U/kg/day in first trimester, 0.8U/kg/day in the second, and 0.9 1.0 U/kg/day in the third trimester
- Usually split needs 2/3 in the am and 1/3 in the pm - split am and pm doses 2/3 and 1/3 as NPH and regular
- With Lantus its different:
 - take total daily dose and split it 50% as Lantus at bedtime and then give humalog/novolog as per carb counting ratio
 Starting ratio is 1U/15grams CHO (if postprandials are elevated go to 1:12 or 1:10 and adjust from there

 - High sugar correction before every meal and 2 hours postprandial 1U per 50mg/dl > 150 mg/dl

Oral Hypoglycemic Agents

- 5 Different Classes
 - Sulfonylureas (increase insulin secretion)
 - Non SU secretogogues (increase insulin secretion)
 - Biguanides (decrease hepatic gluconeogenesis)
 - "-Glucosidase Inhibitors (delay GIT CHO absorption)
 - Thiazolidinediones (increase glucose uptake, decrease lipolysis)

Troubleshooting Lantus and Novolog/Humalog

- If the fasting levels are high:
 - increase bedtime Lantus dose (2 4U)
- If 2 hour postprandial is high
 - assess carb counting skills
 - Adjust carb ratio
- Blood correction factor:
 - If preprandial levels are high increase Lantus
 - If postprandial levels are high adjust carbs/ratio

Oral Hypoglycemic Agents

- 5 Different Classes
 - Sulfonylureas (glyburide, glipizide, glimepiride)
 - Non SU secretogogues (nateglinide, repaglinide)
 - Biguanides (metformin)
 - "-Glucosidase Inhibitors (acarbose, miglitol)
 - Thiazolidinediones (troglitazone)

Glyburide VS Insulin in GDM

- 404 singleton GDM gestations
- Eligible if their fasting glucose > 95 mg/dl or if they failed diet control
- Randomized between 11 33 weeks
- Glyburide vs intensive insulin protocol
- Primary objective: glycemic control
- Secondary objective: maternal/neonatal complications

Langer et al. NEJM 2000;343:1134-8

Glyburide VS Insulin: Results

- 197 patients enrolled 124 diet, 73 glyburide
- 59/73 (81%) achieved satisfactory control with glyburide alone
- 44/73 (60%) needed 7.5 mg/day or less
- 11/59 (19%) with glyburide alone had macrosomia
- 8/59 (11%) had noticeable side effects but only 1 stopped therapy

Kremer CJ, Duff P. AJOG 2004;190:1438-9

Glyburide VS Insulin: Results

- Pretreatment glucose levels were similar in both groups
- Mean glucose concentrations were similar in both groups during treatment (105 / 16 [gly] vs 105 / 18 [ins] mg/dl)
- Only 4% (8 patients) in glyburide group needed insulin
- No severe side effects from glyburide
- Similar levels of cord insulin
- No glyburide detected in cord serum

Langer et al. NEJM 2000;343:1134-8

Conclusion

In women with gestational diabetes glyburide is an effective alternative to insulin therapy

Glyburide VS Insulin in GDM

- 197 singleton GDM gestations
- Only eligible if they failed diet control
- Treated with Glyburide starting at 2.5mg daily and increasing to maximum 20mg/day
- Primary objective: glycemic control as defined by fasting < 90mg% and 1hr PP < 135mg%
- If they failed they were treated with insulin

Kremer CJ, Duff P. AJOG 2004;190:1438-9

Followup Study – NADP Study Group

Clinical setting:

- 60 women diagnosed with GDM at 11-33 weeks
- All had a low CHO diet
- Only started if they failed the diet
- Changed regimen to allow twice daily dosing if necessary (2.5 mg, am [and pm if needed])
- 75% were successfully controlled with glyburide
- 15% of patients needed insulin
- 12% delivered macrosomic babies
- Fasting glucose of 121mg% and BMI 41.6 were cutoff levels below which glyburide was successful (~50% sensitive, ~90% specific)

Conway et al 2003

San Antonio Experience

Clinical setting:

- 75 women treated with glyburide
- achieved glycemic control (84%)
- no glycemic control (16%)
- ROC curves cutoffs for fasting glucose level and BMI that would predict glyburide failure

Results:

- Glyburide failures had higher 3hr GTT levels at all time points
- No cutoff points for glyburide failure noted
- Fasting glucose of > 110 mg% 24% failed versus 12% if Fasting glucose was < 110 mg%

Conway et al. J Matern Fetal Neonatal Med 2004;15:51-5

Allergies

- Glyburide should not be given to patients with:
 - Allergy to sulpha drugs
 - Allergy to sulphonamide drugs
- It is a substrate for the cytochrome p450 enzyme system (CYP3A) – interactions:
- CYP3A Inhibitors: SSRI's, cimetidine, Azoles (diflucan), erythromycin, proteases – will increase glyburide effect
- CYP3A Inducers: carbamezapine, dexamethasone, phenytoin, rifampin - will decrease glyburide effect

Symptomatic Hypoglycemia

- **Continuous Glucose monitoring 72hrs**
- 82 with GDM (30 insulin, 27 diet, 25 glyburide)
- 35 non-diabetic pregnant women (controls)
- Hypoglycemia = 30 mins of < 50 mg/dl (No Sx's)</p>

Results:

- 19/30 insulin (63%)
- 7/25 glyburide (28%)
- 0 patients on diet only or non-diabetic gravidas
- Mean # episodes per day:
 - insulin (4 +/- 2) versus glyburide (2+/-1) p = 0.03
 - insulin 84% events nocturnal, glyburide 50%

Yogev et al. Obstet Gynecol 2004;104:88-93

What About Metformin?

- Increased use of metformin in infertility treatment
- Facilitates ovulation in women with PCOS and decreases abortion rate
- South African data (Jackson and Coetzee) did not show any increased complications or teratogenicity
- May prevent development of GDM

Glyburide Problems?

Large Managed Care Organization:

- adopted a policy of using glyburide in 2001
- compared 236 (glyburide: 2001-02) vs. 268 (insulin: historical control group 1999-2000)

Results:

- Insulin group had higher:

 - BMI (32 vs 30; p =0.04), more caucasians fasting level (107+/-14 vs. 99+/-13; p<0.001)
 - 1 hr PP level (143+/-27 vs 140+/-26; p<008)
- Glyburide group had:
 - lower post treatment fasting and 1 hr pp levels
 - more preeclampsia (12% vs. 6%; p =0.02)
 - more neonatal phototherapy (9% vs. 5%; p=0.046)
 - less NICU admissions 15% vs 24%; p=0.008) Ramos et al. Am J Obstet Gynecol 2004;191:S53(#158) level 11-2

What About Metformin and GDM?

Small US study:

- 33 non-diabetic women with PCOS
 - (28/33 took Metformin until delivery) (12 had prior pregnancies without Metformin)
- 39 non-diabetic women with PCOS (controls)
- studied in 60 pregnancies

Results

- Most patients in both groups were very obese (33 Kg/m2)
- Metformin Group:
 - 1/33 (3%) got GDM (vs. 8/12 (67%) in a prior pregnancy)
 - significant drop in BMI, insulin level/secretion/resistance
 - no teratogenicity
- Control Group:
 - 14/60 (23%) got GDM

Glueck et al. Fertil Steril 2002;77:520-5 (Level 11-2)

What About Metformin and SAB?

- Retrospective US study:
 - 96 women with PCOS
 - 65 took Metformin in early pregnancy
 - 31 did not take Metformin (controls)

- * SAB occurred in 8.8% of Metformin group and 41.9% of Controls (p < 0.001)
- Patients with a prior miscarriage:
- SAB occurred in 11.1% of Metformin group and 58.3% of Controls (p < 0.001)

Jakubowicz et al. J Clin Endocrinol Metab 2002;87:524 (Level 11-2)

Metformin vs. Insulin - RCT

- Prospective RCT:
 - 63 patients with A2 diabetes
 - exclusion: IDDM, liver/kidney dz, CHTN and Sz disorder
 - inclusion: > 11weeks < 36 weeks
 - Insulin: 0.7U/kg/day or Metformin 500mg BID
 - Aim: fasting 60-90 mg%, 2 hr pp < 120 mg%

Results:

- 31 received Insulin and 32 received Metformin
- Demographics were similar
- Those on Metformin were heavier than Insulin (229+/-56 vs 199+/-43 lbs: p = 0.016)
- No difference in diabetic control all within the limits
- No difference in CS rate, EGA at delivery, shoulder
- dystocia, post partum hemorrhage, neonatal outcomes

Moore et al. Am J Obstet Gynecol 2004;191:S8 (A#17) (Level 1)

What About Metformin and Problems?

- Cohort Prospective Danish study:

 - 118 women pregnant diabetic women
 50 took Metformin throughout the pregnancy
 - 68 received a sulphonylurea
 - 42 received insulin during the pregnancy

Results

- Preeclampsia:
- significantly higher incidence in Metformin group compared to sulphonylurea and insulin (32% vs. 7% vs 10%; p < 0.001)
- Perinatal mortality:
- significantly higher in Metformin treated versus no metformin (11.6% vs. 1.3%; p < 0.02)
- No differences in neonatal morbidity between any groups

BUT: Metformin patients were older and had much higher BMI Hellmuth et al. Diabet Med 2001;18:604 (Level 11-1)

What to do about Metformin?

- Current Recommendations:
 - do not start Metformin in pregnant patients
 - consider enrolling patients in RCT's to determine the usefulness and risks of this drug
 - if someone is on Metformin and does not have PCOS stop the drug if they get pregnant
 - if someone is already on Metformin and has PCOS the risk benefit ratio and the minimal data can be presented and she can make her informed choice

Metformin and Preeclampsia

- Prospective Case-Control USA study:
 - 90 PCOS women who got pregnant on Metformin
 - 252 normal healthy pregnant women
 - consecutive deliveries in community hospital

Results

- PCOS women were older, heavier, and more likely to be Caucasian (p < 0.05)
- similar numbers with preconception Type II diabetes (2.2%) vs 0.4%; p = NS)
- No differences in incidence of:
 - preeclampsia (5.2% PCOS vs 3.6% Controls; p = NS), - GDM 10% vs 16% (p = NS)
- No differences in neonatal morbidity, macrosomia

Glueck et al. Diabet Med 2004;21:829 (Level 11-1)

α-glucosidase inhibitors

- prevent pancreatic and intestinal α-glucosidase
- slow down duodenal/jejunal absorption of sugars
- prevent breakdown of oligo- to monosaccharides
- decrease postprandial blood glucose levels
- can be given with insulin or oral agents
- not very effective in people on low CHO diets

Acarbose

- 2 drugs: Acarbose (not absorbed), Miglitol (absorbed)
- Acarbose
- 50 100mg PO TID (start 25mg TID)
- May cause gas, cramping, diarrhea, elevated LFT's
- Pregnancy category B
- Only 2 published studies in GDM: Zarate et al 2000 – 6 patients - significant GI side effects De Veciana et al 2002 – 56 patients – good outcome

Thiazolidinediones

- Decrease peripheral glucose resistance
- Act by gene transcription to activate nuclear receptors that increase peripheral glucose uptake
- May be combined with insulin or oral agents
- Pregnancy category C (but are contraindicated)
- May cause hepatotoxicity (troglitazone withdrawn)
- 2 drugs available: rosiglitazone and pioglitazone

Acarbose VS Insulin

- 56 GDM who failed diet (1800-2000 cal/day) started on 25mg acarbose TID and increased to 100mg as needed
- 54 control GDM patients received insulin
- No differences in outcomes: demographics, BW, duration of Rx, glucose levels, GA, or CS rate
- Acarbose group used 125mg/day at term and Insulin group used 43U insulin per day at term
- 3 women on acarbose switched to insulin: 1 d/t GIT side effects and 2 d/t failure to control glucose level
 De Veciana et al. Obstet Gynecol 2002 (abstract)

ACOG Perspective – 2001 Bulletin

"At this time, no other oral agent has been shown to be safe and effective in GDM, and [the Langer] study has not been confirmed. Further study is recommended before the use of newer oral hypoglycemic agents can be supported for use in pregnancy."

Acarbose VS Diet

- Currently a RCT study is underway at UC San Diego looking at diet versus diet + acarbose
- Goal is to reduce patients who need insulin or glyburide
- Acarbose delays absorption of CHO and is expected to lower postprandial glucose levels but not affect fasting levels

Moore et al. University of San Diego

ADA 2001 Summary Statement

"Glyburide is not FDA approved for the treatment of gestational diabetes and further studies are needed in a larger patient population to establish its safety"

Perinatal Implications of GDM

- With appropriate glucose control IUFD in GDM is similar to that in normal pregnancy
- Antenatal monitoring not needed until 40 weeks if well controlled – start at 32 weeks if poorly controlled
- Major fetal issue is macrosomia and its complications
- Maternal hyperglycemia may not be the only important factor for macrosomia – amino acids, growth factors, lipids are also important
- Fasting < 90 mg/dl, 1 hr <140 mg/dl, and 2 hr <120 mg/dl decreased macrosomia (postprandial levels most NB)
 Diabetes care 1998;21-B161-7

Management in Labor/Postpartum

- Insulin Pump in labor:
 - Fine to use it in labor in combination with IV dextrose
- Lantus/Humalog in labor
 - No data
 - Probably switch to insulin protocol for that institution
- Glyburide in labor:
 - Stop the night before
 - Use insulin protocol at the institution

Timing of Delivery

- GDM alone is not an indication for C/S, or for delivery < 38 wks unless there is fetal compromise (ACOG and ADA)
- There are some data to suggest that delivery at 38 weeks may reduce macrosomia and cesarean section rates (ADA)
- ADA states "delivery during the 38th week is recommended"
 ACOG does not support this statement
- No strong data to suggest that perinatal M + M is increased after 40 weeks in well controlled GDM...BUT intensified fetal surveillance is still recommended (ACOG)

Management in Labor/Postpartum

- Target range:
 - 80 120 mg/dl (plasma), 70 110 mg/dl (capillary)
 - Check levels q 1 4 hours during labor
- Insulin should only be given if glucose exceeds these levels – avoid routine insulin administration
- Elective C/S: no insulin unless high fasting level
- Parenteral glucose recommended at a dose of 0.12 0.18g/Kg/hr (125 ± 200 cc LR/D5W/hr)
- Patients with GDM rarely need postpartum insulin

Diabetes Care 1998;21:B161-7